Asymmetric split-vacancy defects in SiC polytypes: a combined theoretical and electron spin resonance study.
نویسندگان
چکیده
Transition metal defects were studied in different polytypes of silicon carbide (SiC) by ab initio supercell calculations. We found asymmetric split-vacancy (ASV) complexes for these defects that preferentially form at only one site in hexagonal polytypes, and they may not be detectable at all in cubic polytype. Electron spin resonance study demonstrates the existence of ASV complex in niobium doped 4H polytype of SiC.
منابع مشابه
All-optical coherent population trapping with defect spin ensembles in silicon carbide
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions. Because of the various polytypes of SiC, hundreds of unique divacancies exist, many with spin properties comparable to the nitrogen-vacancy center in diamond. If ensembles of such spins can be all-optically manipulated, they make compelling candidate systems for quantum-enhanced memory, co...
متن کاملVacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon
Spin-polarized electronic and transport properties of Armchair GraphdiyneNanoribbons (A-GDYNR) with single vacancy (SV), two types of configurations fordouble vacancy (DV1, DV2) and multi vacancy (MV) defects are studied by nonequilibriumGreen’s function (NEGF) combined with density functional theory (DFT).The results demonstrate that the A-GDYNR with the SV has the lowe...
متن کاملPolytype control of spin qubits in silicon carbide
Crystal defects can confine isolated electronic spins and are promising candidates for solid-state quantum information. Alongside research focusing on nitrogen-vacancy centres in diamond, an alternative strategy seeks to identify new spin systems with an expanded set of technological capabilities, a materials-driven approach that could ultimately lead to 'designer' spins with tailored propertie...
متن کاملThe carbon vacancy related EI4 defect in 4H-SiC
Electron paramagnetic resonance (EPR) was used to study high-purity semi-insulating 4H-SiC irradiated with 2 MeV electrons at room temperature. The EPR signal of the EI4 defect was found to be dominating in samples irradiated and annealed at ~750°C. Additional large-splitting Si hyperfine (hf) lines and also other C and Si hf structures were observed. Based on the observed hf structures and ann...
متن کاملNegative-U system of carbon vacancy in 4H-SiC.
Using electron paramagnetic resonance (EPR), energy levels of the carbon vacancy (V(C)) in 4H-SiC and its negative-U properties have been determined. Combining EPR and deep-level transient spectroscopy we show that the two most common defects in as-grown 4H-SiC--the Z(1/2) lifetime-limiting defect and the EH(7) deep defect--are related to the double acceptor (2-|0) and single donor (0|+) levels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 107 19 شماره
صفحات -
تاریخ انتشار 2011